GUIDELINE for Pasteurella multocida infection

Published: 01/01/2013
Last updated: 01/05/2022
Last reviewed: 09/02/2024

The Pasteurella infection guidelines were first published in the J Feline Med Surg 2013; 15: 570-572 by Albert Lloret. The guidelines were updated by Tadeusz Frymus 2019 and 2022.

Key points

- Pasteurella are part of the normal oral and respiratory tract flora of cats.
- However, these bacteria are commonly isolated from feline subcutaneous abscesses, pyothorax, respiratory tract diseases or other conditions, usually as a secondary agent.
- Diagnosis is not difficult, as Pasteurella grows readily in routinely used bacterial culture media.
- Penicillins and potentiated beta-lactamics are first line antibiotics in both, cats and humans. Feline isolates are also highly sensitive to quinolones.
- Bites, scratches or even only close contact may transmit Pasteurella to humans. Signs of local infection may appear in 3 to 6 hours. Severe infections, septicaemia and peritonitis may occur in immunocompromised, and less frequently in immunocompetent persons in contact with cats. Cat ownership by immunocompromised persons may carry a risk.

Agent properties

Pasteurella multocida, a gram-negative, facultative anaerobic, non-spore-forming pleomorphic coccobacillus, is a commensal bacterium and part of the natural flora in the nasopharynx and upper respiratory tract of the cat (Freshwater, 2008; Dolieslager et al., 2011).

Epidemiology and pathogenesis

Pasteurella multocida is a common commensal or opportunistic pathogen of the oral cavity and/or respiratory tract of cats (Wilson and Ho, 2013). In one study a 90% carrier state in gingival margins was shown (Freshwater, 2008). The bacteria may be involved in disease in cases of preexisting or coinfection with other agents, as well as secondary to trauma, immunosuppression or other predisposing factors (Mavrides et al., 2022; Moon et al., 2022).

Several Pasteurella species have been associated with human infections, P. multocida subsp. multocida, P. canis, P. multocida subsp. septica, P. multocida subsp. gallicida, P. stomatis and P. dagmatis (Garniere et al., 1993; Wilson and Ho, 2013).

Clinical signs in cats

Pasteurella multocida is one of the most frequent pathogens in infected skin wounds and subcutaneous abscesses (Roy et al., 2007). It is also a common bacterium involved in respiratory tract infections. An analysis of bacteria isolated from 231 feline patients suffering from respiratory tract infections in different European countries revealed that the most commonly found organism was P. multocida (36.4% of all isolates) (Moyaert et al., 2019). It is also one of the common bacteria causing pyothorax in cats (Ottenjann et al., 2008; Barrs et al., 2005; Walker et al., 2000; Sim et al., 2021). A post-mortem study of 69 lethal cases of feline pneumonia has been performed recently in Austria (Schmal-Filius et al., 2020). The lungs were positive for at least one infectious agent in 42 (61%) of these cases, and in a high proportion of the samples (35%) P. multocida was involved. Pasteurella has been associated with spinal empyema.
and meningo-encephalomyelitis (Messer et al., 2006; Granger et al., 2007; de Cecco et al., 2021). *Pasteurella* spp. infection may also result from urinary catheterization in feline urethral obstruction (Cooper et al., 2019).

Diagnosis

Diagnosis is made based on bacterial culture from infected tissues or secretions. *Pasteurella* grows readily on chocolate and sheep-blood agar media, but fails to grow on MacConkey agar, the usual medium for Gram-negative bacteria. Strains are usually catalase-, oxidase-, indole- and sucrose-positive.

Treatment and prevention

Penicillins and potentiated beta-lactamics (amoxicillin-clavulinate potassium) are first line antibiotics for the treatment of *Pasteurella* infections (Ray et al., 2007; Freshwater, 2008; Perez Garcia et al., 2009). Quinolones, cephalosporins and modern macrolids are also indicated (Freshwater, 2008). All 84 *P. multocida* isolates from cats suffering from respiratory tract infections in Europe were fully susceptible to pradofloxacin, and also highly susceptible to enrofloxacin and marbofloxacin (Moyaert et al., 2019). Also, in a recent study performed in Spain *Pasteurella* isolates from feline respiratory tract were highly sensitive to a broad spectrum of tested antimicrobials (Li et al., 2021). The same has been found in isolates derived from the skin of cats in 12 European countries (de Jong et al., 2020). In Canada almost 100% of 309 feline isolates were sensitive to trimethoprim-sulfamethoxazole, penicillin, enrofloxacin, doxycycline, cefovecin, cephalxin, amoxicillin-clavulanate, and ampicillin, however only 66% to gentamicin, 46% to amikacin, and 36% to erythromycin (Awosile et al., 2018). In severe cases, the therapeutic decision must be based on antibiotic susceptibility tests.

Zoonotic risk

Severe infections are usually seen in children, pregnant women, patients on chronic immunosuppressive therapy, and immunocompromised persons. Chronic liver disease and cirrhosis entail a special risk of sepsis and peritonitis by *Pasteurella* spp. (Adler et al., 2011; Hey et al., 2012). Although severe disease generally appears in immunocompromised persons, about one third of septicaemic patients were previously healthy individuals (Kimura et al., 2004).

Cat bites frequently become infected (20 to 80%), and *P. multocida* is the most commonly cultured bacterium from infected bite wounds (Freshwater, 2008; Bula-Rudas et al., 2018). Apart from bites, scratches and licks, close contact has also been sufficient for infection. Inhalation of secretion droplets from the upper respiratory tract is also a possible source of infection (Kimura et al., 2004).

P. multocida infection typically produces cellulitis and/or abscesses at the site of the bite or scratch, usually 3 to 6 hours after inoculation (Westling et al., 2000; Perez Garcia et al., 2009). Occasionally, the local infection can progress to necrotising fascitis, septic arthritis and osteomyelitis (Layton, 1999).

Respiratory infection, including pneumonia and bronchopneumonia also are common, mostly in patients with pre-existing lung disease (Perez Garcia et al., 2009).

Less frequently, a disseminating infection may produce septicaemia, which may lead to septic shock, meningitis, endocarditis, peritonitis, arthritis and other serious consequences (Perez Garcia et al., 2009).

Pasteurella peritonitis through a dialysis catheter after contact with a cat has been reported (Rondon-Berrios and Trebejo-Nunez, 2010; Sol et al., 2012).

High prevalence of the bacterium is an indication for the use of prophylactic antibiotic therapy (amoxicillin with clavulanic acid) after a cat bite (Freshwater, 2008; Wilson and Ho, 2013).

Acknowledgement

ABCD Europe gratefully acknowledges the support of Boehringer Ingelheim (the founding sponsor of the ABCD), Virbac, IDEXX GmbH and MSD Animal Health.

References

GUIDELINE for Pasteurella multocida infection

